- 9.1 Relations and Their Properties
- 9.2 n -ary Relations
9.3 Representing Relations
- 9.4 Closures of Relations
9.5 Equivalence Relations

9.1 Relations and Their Properties

If we want to describe a relationship between elements of two sets A and B, we can use ordered pairs with their first element taken from A and their second element taken from B. Since this is a relation between two sets, it is called a binary relation.

Definition: Let A and B be sets. A binary relation from A to B is a subset of $A \times B$.
In other words, for a binary relation R we have $\mathrm{R} \subseteq \mathrm{A} \times \mathrm{B}$. We use the notation $a R b$ to denote that $(a, b) \in R$ and $\mathrm{a} R \mathrm{~b}$ to denote that $(\mathrm{a}, \mathrm{b}) \notin \mathrm{R}$.

Example: Let P be a set of people, C be a set of cars, and D be the relation describing which person drives which $\operatorname{car}(\mathrm{s})$.
$P=\{$ Carl, Suzanne, Peter, Carla $\}$,
C $=\{$ Mercedes, BMW, tricycle $\}$
D $=\{$ (Carl, Mercedes), (Suzanne, Mercedes), (Suzanne, BMW), (Peter, tricycle) $\}$
This means that Carl drives a Mercedes, Suzanne drives a Mercedes and a BMW, Peter drives a tricycle, and Carla does not drive any of these vehicles.

Functions as Relations

You might remember that a function f from a set A to a set B assigns a unique element of B to each element of A.
The graph of f is the set of ordered pairs (a, b) such that $b=f(a)$. Since the graph of f is a subset of $A \times B$, it is a relation from A to B. Moreover, for each element a of A, there is exactly one ordered pair in the graph that has a as its first element.

Relations on a Set

Definition: A relation on the set A is a relation from A to A .
In other words, a relation on the set A is a subset of $\mathrm{A} \times \mathrm{A}$.

Example: Let $\mathrm{A}=\{1,2,3,4\}$. Which ordered pairs are in the relation

$$
\mathrm{R}=\{(\mathrm{a}, \mathrm{~b}) \mid \mathrm{a} \text { divides } \mathrm{b}\} ?
$$

$$
\mathrm{R}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\} .
$$

R	1	2	3	4
1	\times	\times	\times	\times
2		\times		\times
3			\times	
4				\times

Example: Consider these relations on the set of integers:

$$
\begin{aligned}
& R_{1}=\{(a, b) \mid a \leq b\}, \\
& R_{2}=\{(a, b) \mid a=b\}, \\
& R_{3}=\{(a, b) \mid a=b \text { or } a=-b\}, \\
& R_{4}=\{(a, b) \mid a=b\}, \\
& R_{5}=\{(a, b) \mid a=b+1\}, \\
& R_{6}=\{(a, b) \mid a+b \leq 3\} .
\end{aligned}
$$

Which of these relations contain each of the pairs $(1,1),(1,2),(2,1),(1,-1)$, and $(2,2)$?
Solution: The pair $(1,1)$ is in R_{1}, R_{3}, R_{4}, and $R_{6} ;(1,2)$ is in R_{1} and $R_{6} ;(2,1)$ is in R_{2}, R_{5}, and $R_{6} ;(1,-1)$ is in R_{2}, R_{3}, and R_{6}; and finally, $(2,2)$ is in R_{1}, R_{3}, and R_{4}.

Example: Let $\mathrm{A}=\{1,2,3,4\}$. Which ordered pairs are in the relation

$$
\mathrm{R}=\{(\mathrm{a}, \mathrm{~b}) \mid \mathrm{a}<\mathrm{b}\} ?
$$

$$
R=\{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)\} .
$$

Properties of Relations

We will now look at some useful ways to classify relations.

Definition: A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $\mathrm{a} \in \mathrm{A}$.

Are the following relations on $\{1,2,3,4\}$ reflexive

$$
\begin{array}{ll}
R=\{(1,1),(1,2),(2,3),(3,3),(4,4)\} & \text { No. } \\
R=\{(1,1),(2,2),(2,3),(3,3),(4,4)\} & \text { Yes. } \\
R=\{(1,1),(2,2),(3,3)\} & \text { No. }
\end{array}
$$

Definitions:

A relation R on a set A is called symmetric If $(a, b) \in R$ implies $(b, a) \in R$ for all $a, b \in A$.
A relation R on a set A is called antisymmetric If $(a, b) \in R$ and $(b, a) \in R$ implies $\mathrm{a}=\mathrm{b}$.

Remark: Using quantifiers, we see that the relation R on the set A is symmetric if

$$
\forall \mathrm{a} \forall \mathrm{~b}((\mathrm{a}, \mathrm{~b}) \in \mathrm{R} \rightarrow(\mathrm{~b}, \mathrm{a}) \in \mathrm{R}) .
$$

Similarly, the relation R on the set A is antisymmetric if

$$
\forall \mathrm{a} \forall \mathrm{~b}(((\mathrm{a}, \mathrm{~b}) \in \mathrm{R} \wedge(\mathrm{~b}, \mathrm{a}) \in \overline{\mathrm{R}) \rightarrow(\mathrm{a}=\mathrm{b}))} .
$$

Which of the following relations are symmetric and which are antisymmetric?
Example 7 Consider the following relations on $\{1,2,3,4\}$:

$$
\begin{aligned}
& R_{1}=\{(1,1),(1,2),(2,1),(2,2),(3,4),(4,1),(4,4)\}, \\
& R_{2}=\{(1,1),(1,2),(2,1)\}, \\
& R_{3}=\{(1,1),(1,2),(1,4),(2,1),(2,2),(3,3),(4,1),(4,4)\}, \\
& R_{4}=\{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)\}, \\
& R_{5}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)\}, \\
& R_{6}=\{(3,4)\} .
\end{aligned}
$$

Solution: The relations R_{2} and R_{3} are symmetric, because in each case
(b, a) belongs to the relation whenever (a, b) does. For R_{3}, the only thing to check is that both $(2,1)$ and $(1,2)$ are in the relation. For R_{3}, it is necessary to check that both $(1,2)$ and $(2,1)$ belong to the relation, and $(1,4)$ and $(4,1)$ belong to the relation. The reader should verify that none of the other relations is symmetric. This is done by finding a pair (a, b) such that it is in the relation but (b, a) is not.
R_{4}, R_{5}, and R_{6} are all antisymmetric. For each of these relations there is no pair of elements a and b with $\mathrm{a}=\mathrm{b}$ such that both (a, b) and (b, a) belong to the relation. The reader should verify that none of the other relations is antisymmetric. This is done by finding a pair (a, b) with $\mathrm{a} \neq \mathrm{b}$ such that (a, b) and (b, a) are both in the relation.

Example

Is the "divides" relation on the set of positive integers symmetric?
Is it antisymmetric?
Solution: This relation is not symmetric because $1 \mid 2$, but $2 \backslash 1$. It is antisymmetric, for if a and b are positive integers with $\mathrm{a} \mid \mathrm{b}$ and $\mathrm{b} \mid \mathrm{a}$, then $\mathrm{a}=\mathrm{b}$

Definition: A relation R on a set A is called transitive if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$ for $a, b, c \in A$.

Remark: Using quantifiers we see that the relation R on a set A is transitive if we have $\forall a \forall b \forall c(((a, b) \in R \wedge(b, c) \in R) \rightarrow(a, c) \in R)$.

Example

Which of the relations in Example 7 are transitive?
R_{4}, R_{5}, and R_{6} are transitive. For each of these relations, we can show that it is transitive by verifying that if (a,b) and (b, c) belong to this relation, then (a, c) also does.

Example Are the following relations on $\{1,2,3,4\}$ transitive?

$$
\begin{array}{ll}
R=\{(1,1),(1,2),(2,2),(2,1),(3,3)\} & \text { Yes. } \\
R=\{(1,3),(3,2),(2,1)\} & \text { No. } \\
R=\{(2,4),(4,3),(2,3),(4,1)\} & \text { No. }
\end{array}
$$

Combining Relations

Relations are sets, and therefore, we can apply the usual set operations to them.

Example

Let $\mathrm{A}=\{1,2,3\}$ and $\mathrm{B}=\{1,2,3,4\}$. The relations $R_{1}=\{(1,1),(2,2),(3,3)\}$ and $R_{2}=\{(1,1),(1,2),(1,3),(1,4)\}$ can be combined to obtain

$$
\begin{aligned}
& R_{1} \cup R_{2}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(3,3)\} \\
& R_{1} \cap R_{2}=\{(1,1)\} \\
& R_{1}-R_{2}=\{(2,2),(3,3)\} \\
& R_{2}-R_{1}=\{(1,2),(1,3),(1,4)\} .
\end{aligned}
$$

List the ordered pairs in the relation R from $A=\{0,1,2,3,4\}$ to $B=\{0,1,2,3\}$, where $(a, b) \in R$ if and only if
a) $a=b$.
b) $a+b=4$.
c) $a>b$.
d) $a \| b$.

9.2 n-ary Relations and Their Applications

In order to study an interesting application of relations, namely databases, we first need to generalize the concept of binary relations to n -ary relations.

Definition: Let $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}$ be sets. An \mathbf{n}-ary relation on these sets is a subset of $A_{1} \times A_{2} \times \ldots \times A_{n}$.
The sets $A_{1}, A_{2}, \ldots, A_{n}$ are called the domains of the relation, and n is called its degree

Example

Let $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}, \mathrm{c}) \mid \mathrm{a}=2 \mathrm{~b} \wedge \mathrm{~b}=2 \mathrm{c}$ with $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathbf{N}\}$
What is the degree of R ?
The degree of R is 3 , so its elements are triples.
What are its domains?
Its domains are all equal to the set of integers.
Is $(2,4,8)$ in R ?
No.
Is $(4,2,1)$ in R ?
Yes

Example

Let R be the relation on $\mathbf{N} \times \mathbf{N} \times \mathbf{N}$ consisting of triples (a, b, c), where a, b, and c are integers with $a<b<c$.Then $(1,2,3) \in R$, but $(2,4,3) \notin R$. The degree of this relation is 3 . Its domains are all equal to the set of natural numbers.

Example

Let R be the relation on $\mathbf{Z} \times \mathbf{Z} \times \mathbf{Z}^{+}$consisting of triples ($\mathrm{a}, \mathrm{b}, \mathrm{m}$), where a, b, and m are integers with $\mathrm{m} \geq 1$ and $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$. Then $(8,2,3),(-1,9,5)$, and $(14,0,7)$ all belong to R, but $(7,2$, 3), $(-2,-8,5)$, and $(11,0,6)$ do not belong to R because $8 \equiv 2$ $(\bmod 3),-1 \equiv 9(\bmod 5)$, and $14 \equiv 0(\bmod 7)$, but $7 \not \equiv 2(\bmod 3)$, $-2 \not \equiv-8(\bmod 5)$, and $11 \not \equiv 0(\bmod 6)$.

This relation has degree 3 and its first two domains are the set of all integers and its third domain is the set of positive integers.

9.3 Representing Relations

We already know different ways of representing relations. We will now take a closer look at two ways of representation: Zero-one matrices and directed graphs.

Representing Relations Using Matrices

If R is a relation from $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ to $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$, then R can be represented by the zero-one matrix $M_{R}=\left[\mathrm{m}_{\mathrm{ij}}\right]$ with

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{ij}}=1, \quad \text { if }\left(\mathrm{a}_{\mathrm{i}}, \mathrm{~b}_{\mathrm{j}}\right) \in \mathrm{R}, \text { and } \\
& \mathrm{m}_{\mathrm{ij}}=0, \quad \text { if }\left(\mathrm{a}_{\mathrm{i}}, \mathrm{~b}_{\mathrm{j}}\right) \notin \mathrm{R} .
\end{aligned}
$$

Note that for creating this matrix we first need to list the elements in A and B in a particular, but arbitrary order.

Example: How can we represent the relation $\mathrm{R}=\{(2,1),(3,1),(3,2)\}$ as a zero-one matrix?

Solution: The matrix M_{R} is given by

$$
M_{R}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
1 & 1
\end{array}\right]
$$

The 1 s in M_{R} show that the pairs $(2,1),(3,1)$, and $(3,2)$ belong to R. The 0 s show that no other pairs belong to R.

What do we know about the matrices representing a relation on a set (a relation from A to A) ?

- They are square matrices.

What do we know about matrices representing reflexive relations?

- All the elements on the diagonal of such matrices Mref must be 1s.

$$
M_{\text {ref }}=\left[\begin{array}{lllll}
1 & & & & \\
& 1 & & & \\
& & \cdot & & \\
& & & & \\
& & & & \\
& & & &
\end{array}\right]
$$

\square What do we know about the matrices representing symmetric relations?

- These matrices are symmetric, that is, $M_{R}=\left(M_{R}\right)^{t}$.

(a) Symmetric
$M_{R}=\left[\begin{array}{llll}1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1\end{array}\right]$
symmetric matrix, symmetric relation.

(b) Antisymmetric
non-symmetric matrix, non-symmetric relation.

Example

Suppose that the relation R on a set is represented by the matrix

$$
\mathbf{M}_{R}=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

Is R reflexive, symmetric, and/or antisymmetric?

- All the diagonal elements $=1$, so R is reflexive.
- The lower left triangle of the matrix = the upper right triangle, so R is symmetric.
- To be antisymmetric, it must be the case that no more than one element in a symmetric position on either side of the diagonal $=$ 1. But $M_{23}=M_{32}=1$. So R is not antisymmetric.

Let R be a binary relation on a set A and let M be the zero-one matrix for R.
R is reflexive iff $M_{i i}=1$ for all i
R is symmetric iff M is a symmetric matrix, i.e., $M=M^{T}$ R is antisymmetric if $M_{i j}=0$ or $M_{j i}=0$ for all $i \neq j$

The Boolean operations join and meet (you remember?) can be used to determine the matrices representing the union and the intersection of two relations, respectively.

To obtain the join of two zero-one matrices, we apply the Boolean "or" function to all corresponding elements in the matrices.

To obtain the meet of two zero-one matrices, we apply the Boolean "and" function to all corresponding elements in the matrices.

Example: Let the relations R and S be represented by the matrices

$$
M_{R}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \quad M_{S}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

What are the matrices representing $R \cup S$ and $R \cap S$?
Solution: These matrices are given by

Do you remember the Boolean product of two zero-one matrices?
Let $\quad \mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ be an $m \times k$ zero-one matrix
and

$$
\mathrm{B}=\left[\mathrm{b}_{\mathrm{ij}}\right] \text { be a } k \not x n \text { zero-one matrix. }
$$

Then the Boolean product of A and B , denoted by AoB , is the $\mathrm{m} \times$ n matrix with (i, j)th entry $\left[\mathrm{c}_{\mathrm{ij}}\right.$], where

$$
c_{\mathrm{ij}}=\left(\mathrm{a}_{\mathrm{i} 1} \wedge \mathrm{~b}_{1 \mathrm{j}}\right) \vee\left(\mathrm{a}_{\mathrm{i} 2} \wedge \mathrm{~b}_{2 \mathrm{i}}\right) \vee \ldots \vee\left(\mathrm{a}_{\mathrm{ik}} \wedge \mathrm{~b}_{\mathrm{kj}}\right) .
$$

$$
c_{i j}=1
$$

if and only if at least one of the terms $\left(a_{i n} \wedge b_{n j}\right)=1$ for some n;
otherwise

$$
c_{i j}=0 .
$$

In terms of the relations, this means that C contains a pair $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{z}_{\mathrm{j}}\right)$ if and only if there is an element y_{n} such that $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{n}}\right)$ is in relation A and $\left(\mathrm{y}_{\mathrm{n}}, \mathrm{z}_{\mathrm{j}}\right)$ is in relation B.

Therefore, $\underline{\mathrm{C}=\mathrm{B}} \cdot \underline{\mathrm{A}}$ (composite of A and B).

This gives us the following rule:

$$
\mathrm{M}_{\mathrm{B}^{\circ} \mathrm{A}}=\mathrm{M}_{\mathrm{A}} \mathrm{OM}_{\mathrm{B}}
$$

In other words, the matrix representing the composite of relations A and B is the Boolean product of the matrices representing A and B.
Analogously, we can find matrices representing the powers of relations:
$\mathrm{M}_{\mathrm{R}^{\mathrm{n}}}=\mathrm{M}_{\mathrm{R}}{ }^{[\mathrm{n}]} \quad$ (n -th Boolean power).

Example: Find the matrix representing R^{2}, where the matrix representing R is given by

$$
M_{R}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

Solution: The matrix for R^{2} is given by

$$
M_{R^{2}}=M_{R}{ }^{[2]}=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

Example

Find the matrix representing the relations $S \circ R$, where the matrices representing R and S are

$$
\mathbf{M}_{R}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \text { and } \quad \mathbf{M}_{S}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1
\end{array}\right] .
$$

The matrix for $S \circ \mathrm{R}$ is

$$
\mathbf{M}_{S \circ R}=\mathbf{M}_{R} \odot \mathbf{M}_{S}=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] .
$$

Quiz

Dr. Mohamed $\mathcal{A} 6 d e l-\mathcal{A} a l$ Discrete Mathematics

Let R be the relation represented by the matrix

$$
\mathbf{M}_{R}=\left[\begin{array}{lll}
\mathrm{O} & 1 & 1 \\
1 & 1 & \mathrm{O} \\
1 & \mathrm{O} & 1
\end{array}\right]
$$

Find the matrix representing
a) R^{-1}.
b) \bar{R}.
c) R^{2}.

Representing Relations Using Digraphs

Definition: A directed graph, or digraph, consists of a set \mathbf{V} of vertices (or nodes) together with a set \mathbf{E} of ordered pairs of elements of V called edges (or arcs).

The vertex a is called the initial vertex of the edge (a, b), and the vertex b is called the terminal vertex of this edge.

Example: Display the digraph (V,E) with $\mathrm{V}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$, $E=\{(a, b),(a, d),(b, b),(b, d),(c, a),(c, b),(d, b)\}$.

An edge of the form (b, b) is called a loop.

Obviously, we can represent any relation R on a set A by the digraph with A as its vertices and all pairs $(a, b) \in R$ as its edges.

Vice versa, any digraph with vertices V and edges E can be represented by a relation on V containing all the pairs in E .

This one-to-one correspondence between relations and digraphs means that any statement about relations also applies to digraphs, and vice versa.

Example

What are the ordered pairs in the relation R represented by the directed graph to the left?

This digraph represents the relation $\mathrm{R}=\{(1,1),(1,3),(2,1),(2,3),(2,4),(3,1),(3,2),(4,1)\}$ on the set $\{1,2,3,4\}$.

$$
R=\{(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,3),(4,1),(4,3)\}
$$

According to the digraph representing R :

- is $(4,3)$ an ordered pair in R ?
- is $(3,4)$ an ordered pair in R ?
- is $(3,3)$ an ordered pair in R ?

$(4,3)$ is an ordered pair in R
$(3,4)$ is not an ordered pair in $R-$ no arrowhead pointing from 3 to 4
$(3,3)$ is an ordered pair in R - loop back to itself

A relation digraph can be used to determine whether the relation has various properties

Reflexive - must be a loop at every vertex.
Symmetric - for every edge between two distinct points there must be an edge in the opposite direction.
Antisymmetric - There are never two edges in opposite direction between two distinct points.
Transitive - If there is an edge from x to y and an edge from y to z, there must be an edge from x to z.

Example

According to the digraph representing R :
Lecture 6

- is R reflexive?
\bullet is R symmetric?
- is R antisymmetric?
- is R transitive?

Solution: $\quad \cdot \mathrm{R}$ is reflexive - there is a loop at every vertex

- R is not symmetric - there is an edge from a to b but not from b to a
- R is not antisymmetric - there are edges in both directions connecting b and c
- R is not transitive - there is an edge from a to b and an edge from b to c, but not from a to c

Example

According to the digraph representing S :

- is S reflexive?
- is S symmetric?
- is S antisymmetric?

-S is not reflexive - there aren't loops at every vertex
- S is symmetric - for every edge from one distinct vertex to another, there is a matching edge in the opposite direction
- S is not antisymmetric - there are edges in both directions connecting a and b
- S is not transitive - there is an edge from c to a and an edge from a to b, but not from c to b

9.4 Closures of Relations

Definition of Closure:

The closure of a relation R with respect to property P is the relation obtained by adding the minimum number of ordered pairs to R to obtain property P .

Properties: reflexive, symmetric, and transitive

Example

$A=\{1,2,3\}$
$R=\{(1,1),(1,2),(2,1),(3,2)\}$
Is R reflexive? Why?
What pairs do we need to make it reflexive?
$(2,2),(3,3)$
Reflexive closure of $\mathrm{R}=\{(1,1),(1,2),(2,1),(3,2)\} \cup$ $\{(2,2),(3,3)\}$ is reflexive.

Reflexive Closure

In terms of the digraph representation
Add loops to all vertices
In terms of the 0-1 matrix representation
Put 1's on the diagonal

Example: Symmetric closure

$$
\begin{aligned}
& A=\{1,2,3\} \\
& R=\{(1,1),(1,2),(2,2),(2,3),(3,1),(3,2)\} \\
& \text { Is } R \text { symmetric? } \\
& \text { What pairs do we need to make it symmetric? }
\end{aligned}
$$

$(2,1)$ and $(1,3)$
Symmetric closure of $R=\{(1,1),(1,2),(2,2),(2,3)$, $(3,1),(3,2)\} \cup\{(2,1),(1,3)\}$

Can be constructed by taking the union of a relation with its inverse.
In terms of the digraph representation
Add arcs in the opposite direction
In terms of the 0-1 matrix representation
Add 1's to the pairs across the diagonals that differ in value.

transitive Closure

THEOREM 3 Let \mathbf{M}_{R} be the zero-one matrix of the relation R on a set with n elements. Then the zero-one matrix of the transitive closure R^{*} is

$$
\mathbf{M}_{R^{*}}=\mathbf{M}_{R} \vee \mathbf{M}_{R}^{[2]} \vee \mathbf{M}_{R}^{[3]} \vee \cdots \vee \mathbf{M}_{R}^{[n]}
$$

Example
Find the zero-one matrix of the transitive closure of the relation R where

Solution

$$
\mathbf{M}_{R}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]
$$

By Theorem 3, it follows that the zero-one matrix of R

$$
\mathbf{M}_{R^{*}}=\mathbf{M}_{R} \vee \mathbf{M}_{R}^{[2]} \vee \mathbf{M}_{R}^{[3]} .
$$

Because

$$
\mathbf{M}_{R}^{[2]}=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right] \quad \text { and } \quad \mathbf{M}_{R}^{[3]}=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

it follows that

$$
\mathbf{M}_{R^{*}}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right] \vee\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right] \vee\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

9.5 Equivalence Relations

Equivalence relations are used to relate objects that are similar in some way.
Definition: A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive.

Two elements that are related by an equivalence relation R are called equivalent.

Example

Let R be the relation on the set of real numbers such that $a R b$ if and only if $\mathrm{a}-\mathrm{b}$ is an integer. Is R an equivalence relation?

Solution: Because $\mathrm{a}-\mathrm{a}=0$ is an integer for all real numbers a , aRa for all real numbers a. Hence, R is reflexive. Now suppose that $a R b$. Then $a-b$ is an integer, so $\mathrm{b}-\mathrm{a}$ is also an integer. Hence, bRa . It follows that R is symmetric. If $a R b$ and $b R c$, then $a-b$ and $b-c$ are integers. Therefore, $a-c=(a-b)+(b-c)$ is also an integer. Hence, aRc. Thus, R is transitive. Consequently, R is an equivalence relation.

Example: Suppose that R is the relation on the set of strings that consist of English letters such that aRb if and only if $l(a)=l(b)$, where $l(x)$ is the length of the string x. Is R an equivalence relation?

Solution:

$\cdot R$ is reflexive, because $l(a)=l(a)$ and therefore aRa for any string a.
$\cdot R$ is symmetric, because if $l(a)=l(b)$ then $l(b)=l(a)$, so if aRb then bRa.

- R is transitive, because if $l(a)=l(b)$ and $l(b)=l(c)$, then $l(a)=l(c)$, so aRb and bRc implies aRc . R is an equivalence relation.

Example

Show that the "divides" relation is the set of positive integers in not an equivalence relation.
we know that the "divides" relation is reflexive and transitive. However, we know that this relation is not symmetric (for instance, $2 \mid 4$ but $4 \nVdash 2$). We conclude that the "divides" relation on the set of positive integers is not an equivalence relation.

Definition: Let R be an equivalence relation on a set A . The set of all elements that are related to an element a of A is called the equivalence class of a. The equivalence class of a with respect to R is denoted by $[\mathrm{a}]_{\mathrm{R}}$. When only one relation is under consideration, we will delete the subscript R and write [a] for this equivalence class. If $b \in[a]_{R}, b$ is called a representative of this equivalence class.

$$
[a]_{R}=\{s \mid(a, s) \in R\} .
$$

Example

What are the equivalence classes of 0 and 1 for congruence modulo 4?
The equivalence class of 0 contains all integers a such that a $\equiv 0(\bmod 4)$. The integers in this class are those divisible by 4 . Hence, the equivalence class of 0 for this relation is $[0]=\{\ldots,-8,-4,0,4,8, \ldots\}$.

The equivalence class of 1 contains all the integers a such that $\mathrm{a} \equiv 1(\bmod 4)$. The integers in this class are those that have a remainder of 1 when divided by 4 . Hence, the equivalence class of 1 for this relation is

$$
[1]=\{\ldots,-7,-3,1,5,9, \ldots\} .
$$

$$
\begin{aligned}
& {[0]=\{\ldots,-8,-4,0,4,8, \ldots\} .} \\
& {[1]=\{\ldots,-7,-3,1,5,9, \ldots\} .}
\end{aligned}
$$

THEOREM $1 \quad$ Let R be an equivalence relation on a set A. These statements for elements a and b of A are equivalent:
(i) $a R b$
(ii) $[a]=[b]$
(iii) $[a] \cap[b] \neq \emptyset$

Definition: A partition of a set S is a collection of disjoint nonempty subsets of S that have S as their union. In other words, the collection of subsets $A_{i}, i \in I$, forms a partition of S if and only if
(i) $A_{i} \neq \varnothing$ for $i \in I$
(ii) $A_{i} \cap A_{j}=\varnothing$, if $i \neq j$
(iii) $\cup_{i \in I} A_{i}=S$

FIGURE 1 A Partition of a Set.

Examples: Let S be the set $\{\mathrm{u}, \mathrm{m}, \mathrm{b}, \mathrm{r}, \mathrm{o}, \mathrm{c}, \mathrm{k}, \mathrm{s}\}$. Do the following collections of sets partition S ?

$$
\begin{array}{ll}
\begin{array}{l}
\{\{m, o, c, k\},\{r, u, b, s\}\} \\
\{\{c, o, m, b\},\{u, s\},\{r\}\}
\end{array} & \text { no }(k \text { is missing }) . \\
\{\{b, r, o, c, k\},\{m, u, s, t\}\} & \text { no }(t \text { is not in } S) . \\
\{\{u, m, b, r, o, c, k, s\}\} \quad \text { yes. } \\
\{\{b, o, o, k\},\{r, u, m\},\{c, s\}\} & \text { yes }(\{b, o, o, k\}=\{b, o, k\}) . \\
\{\{u, m, b\},\{r, o, c, k, s\}, \varnothing\} & \text { no }(\varnothing \text { not allowed). }
\end{array}
$$

> Theorem: Let R be an equivalence relation on a set S. Then the equivalence classes of R form a partition of S. Conversely, given a partition $\left\{A_{i} \mid i \in I\right\}$ of the set S, there is an equivalence relation R that has the sets $\mathrm{A}_{\mathrm{i}}, \mathrm{i} \in \mathrm{I}$, as its equivalence classes.

Example

Suppose that $S=\{1,2,3,4,5,6\}$. The collection of sets $A_{1}=\{1,2,3\}$, $A_{2}=\{4,5\}$, and $A_{3}=\{6\}$ forms a partition of S, because these sets are disjoint and their union is S .

Another example: Let R be the relation $\{(\mathrm{a}, \mathrm{b}) \mid \mathrm{a} \equiv \mathrm{b}(\bmod 3)\}$ on the set of integers. Is R an equivalence relation?
Yes, R is reflexive, symmetric, and transitive.
What are the equivalence classes of R ?

$$
\begin{aligned}
& \{\{\ldots,-6,-3,0,3,6, \ldots\},\{\ldots,-5,-2,1,4,7, \ldots\}, \\
& \{\ldots,-4,-1,2,5,8, \ldots\}\}
\end{aligned}
$$

Example

What are the sets in the partition of the integers arising from congruence modulo 4?

$$
\begin{aligned}
{[0]_{4} } & =\{\ldots,-8,-4,0,4,8, \ldots\}, \\
{[1]_{4} } & =\{\ldots,-7,-3,1,5,9, \ldots\} \\
{[2]_{4} } & =\{\ldots,-6,-2,2,6,10, \ldots\}, \\
{[3]_{4} } & =\{\ldots,-5,-1,3,7,11, \ldots\}
\end{aligned}
$$

These congruence classes are disjoint, and every integer is in exactly one of them. In other words, as Theorem 2 says, these congruence classes form a partition.

